Total Pageviews

Search This Blog

Friday, October 6, 2023

How to Understand Pascal's Triangle

 Most students who take algebra learn about FOIL, which stands for First, Outer, Inner, Last. It tells the order of multiplication for a binomial like (a + b).

(a + b)^2 = (a + b)(a +b) = a^2 + ab + ba + b^2 = a^2 + 2ab +b^2

It's easy enough for (a + b)^2, but what about (a + b)^3 or a greater exponent?

A mathematician named Pascal noticed a pattern when expanding binomials. The coefficients can be arranged into a triangle, like so:

                                                                            1

                                                                       1   2   1

                                                                     1   3   3   1

                                                                   1   4   6   4   1

Do you see the pattern? Take a few minutes to work out the next row. Hint: the first and last numbers will be 1 and the rest follow a rule from the row above. 

The next row is 1 5 10 10 5 1, and those are the coefficients for the expansion of (a + b)^5. The 1s and 4s in the previous row make 5 in two places and the two 4s and the 6 make 10 in two places. Filling out this chart is much easier than trying to work this out with FOIL. Let's do that anyway just to double check.

(a + b)^5 = (a + b)(a + b)^4 =

(a + b)(a + b)^2(a + b)^2 =

(a + b)(a^2 + 2ab + b^2)(a^2 + 2ab + b^2) =

(a + b)(a^2 + 2ab + b^2)^2 =

(a + b)(a^4 + 2a^3b + a^2b^2 + 2a^3b + 4a^2b^2 + 2ab^3 + a^2b^2 + 2ab^3 + b^4) =

(a + b)(a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4)  =

(a^5 + 4a^4b + 6a^3b^2 + 4a^2b^3 + ab^4 + a^4b + 4a^3b^2 + 6a^2b^3 + 4ab^4 + b^5) =

a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5

Whew! That's a lot of algebra. It's much easier just to use Pascal's Triangle. 

No comments: